↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
s22: (b,f)
isNat1: (b)
add3: (b,b,f)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> IF_S2_2_IN_1_GA5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> S2_2_IN_GA2(plus_22(plus_22(A, B), C), D)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_2_GA4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
S2_2_IN_GA2(plus_22(A, B), C) -> S2_2_IN_GA2(plus_22(B, A), C)
S2_2_IN_GA2(plus_22(X, Y), Z) -> IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_in_ga2(X, A))
S2_2_IN_GA2(plus_22(X, Y), Z) -> S2_2_IN_GA2(X, A)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_6_GA4(A, B, C, isNat_1_in_g1(A))
S2_2_IN_GA2(plus_22(A, B), C) -> ISNAT_1_IN_G1(A)
ISNAT_1_IN_G1(s_11(X)) -> IF_ISNAT_1_IN_1_G2(X, isNat_1_in_g1(X))
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> IF_S2_2_IN_7_GA4(A, B, C, isNat_1_in_g1(B))
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> ISNAT_1_IN_G1(B)
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> IF_S2_2_IN_8_GA4(A, B, C, add_3_in_gga3(A, B, C))
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> ADD_3_IN_GGA3(A, B, C)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_in_ga2(Y, B))
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> S2_2_IN_GA2(Y, B)
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> IF_S2_2_IN_5_GA6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> S2_2_IN_GA2(plus_22(A, B), Z)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> IF_S2_2_IN_1_GA5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> S2_2_IN_GA2(plus_22(plus_22(A, B), C), D)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_2_GA4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
S2_2_IN_GA2(plus_22(A, B), C) -> S2_2_IN_GA2(plus_22(B, A), C)
S2_2_IN_GA2(plus_22(X, Y), Z) -> IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_in_ga2(X, A))
S2_2_IN_GA2(plus_22(X, Y), Z) -> S2_2_IN_GA2(X, A)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_6_GA4(A, B, C, isNat_1_in_g1(A))
S2_2_IN_GA2(plus_22(A, B), C) -> ISNAT_1_IN_G1(A)
ISNAT_1_IN_G1(s_11(X)) -> IF_ISNAT_1_IN_1_G2(X, isNat_1_in_g1(X))
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> IF_S2_2_IN_7_GA4(A, B, C, isNat_1_in_g1(B))
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> ISNAT_1_IN_G1(B)
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> IF_S2_2_IN_8_GA4(A, B, C, add_3_in_gga3(A, B, C))
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> ADD_3_IN_GGA3(A, B, C)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_in_ga2(Y, B))
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> S2_2_IN_GA2(Y, B)
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> IF_S2_2_IN_5_GA6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> S2_2_IN_GA2(plus_22(A, B), Z)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_3_IN_GGA2(s_11(X), Y) -> ADD_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> S2_2_IN_GA2(plus_22(A, B), Z)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> S2_2_IN_GA2(Y, B)
S2_2_IN_GA2(plus_22(X, Y), Z) -> IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_in_ga2(X, A))
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> S2_2_IN_GA2(plus_22(plus_22(A, B), C), D)
S2_2_IN_GA2(plus_22(X, Y), Z) -> S2_2_IN_GA2(X, A)
S2_2_IN_GA2(plus_22(A, B), C) -> S2_2_IN_GA2(plus_22(B, A), C)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_in_ga2(Y, B))
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ PrologToPiTRSProof
IF_S2_2_IN_4_GA2(A, s2_2_out_ga1(B)) -> S2_2_IN_GA1(plus_22(A, B))
IF_S2_2_IN_3_GA2(Y, s2_2_out_ga1(A)) -> S2_2_IN_GA1(Y)
S2_2_IN_GA1(plus_22(X, Y)) -> IF_S2_2_IN_3_GA2(Y, s2_2_in_ga1(X))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
IF_S2_2_IN_3_GA2(Y, s2_2_out_ga1(A)) -> IF_S2_2_IN_4_GA2(A, s2_2_in_ga1(Y))
s2_2_in_ga1(plus_22(A, plus_22(B, C))) -> if_s2_2_in_1_ga1(s2_2_in_ga1(plus_22(plus_22(A, B), C)))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_2_ga1(s2_2_in_ga1(plus_22(B, A)))
s2_2_in_ga1(plus_22(X, 0_0)) -> s2_2_out_ga1(X)
s2_2_in_ga1(plus_22(X, Y)) -> if_s2_2_in_3_ga2(Y, s2_2_in_ga1(X))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_6_ga3(A, B, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g1(isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g
if_isNat_1_in_1_g1(isNat_1_out_g) -> isNat_1_out_g
if_s2_2_in_6_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_7_ga3(A, B, isNat_1_in_g1(B))
if_s2_2_in_7_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_8_ga1(add_3_in_gga2(A, B))
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
if_s2_2_in_8_ga1(add_3_out_gga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_3_ga2(Y, s2_2_out_ga1(A)) -> if_s2_2_in_4_ga2(A, s2_2_in_ga1(Y))
if_s2_2_in_4_ga2(A, s2_2_out_ga1(B)) -> if_s2_2_in_5_ga1(s2_2_in_ga1(plus_22(A, B)))
if_s2_2_in_5_ga1(s2_2_out_ga1(Z)) -> s2_2_out_ga1(Z)
if_s2_2_in_2_ga1(s2_2_out_ga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_1_ga1(s2_2_out_ga1(D)) -> s2_2_out_ga1(D)
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
IF_S2_2_IN_4_GA2(A, s2_2_out_ga1(B)) -> S2_2_IN_GA1(plus_22(A, B))
IF_S2_2_IN_3_GA2(Y, s2_2_out_ga1(A)) -> S2_2_IN_GA1(Y)
IF_S2_2_IN_3_GA2(Y, s2_2_out_ga1(A)) -> IF_S2_2_IN_4_GA2(A, s2_2_in_ga1(Y))
With the implicit AFS we had to orient the following set of usable rules non-strictly.
S2_2_IN_GA1(plus_22(X, Y)) -> IF_S2_2_IN_3_GA2(Y, s2_2_in_ga1(X))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
Used ordering: POLO with Polynomial interpretation:
if_s2_2_in_4_ga2(A, s2_2_out_ga1(B)) -> if_s2_2_in_5_ga1(s2_2_in_ga1(plus_22(A, B)))
s2_2_in_ga1(plus_22(A, plus_22(B, C))) -> if_s2_2_in_1_ga1(s2_2_in_ga1(plus_22(plus_22(A, B), C)))
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
if_s2_2_in_3_ga2(Y, s2_2_out_ga1(A)) -> if_s2_2_in_4_ga2(A, s2_2_in_ga1(Y))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_6_ga3(A, B, isNat_1_in_g1(A))
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
if_s2_2_in_8_ga1(add_3_out_gga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_6_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_7_ga3(A, B, isNat_1_in_g1(B))
if_s2_2_in_1_ga1(s2_2_out_ga1(D)) -> s2_2_out_ga1(D)
s2_2_in_ga1(plus_22(X, Y)) -> if_s2_2_in_3_ga2(Y, s2_2_in_ga1(X))
if_s2_2_in_7_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_8_ga1(add_3_in_gga2(A, B))
s2_2_in_ga1(plus_22(X, 0_0)) -> s2_2_out_ga1(X)
if_s2_2_in_2_ga1(s2_2_out_ga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_5_ga1(s2_2_out_ga1(Z)) -> s2_2_out_ga1(Z)
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_2_ga1(s2_2_in_ga1(plus_22(B, A)))
POL(0_0) = 1
POL(IF_S2_2_IN_3_GA2(x1, x2)) = x1 + x2
POL(if_s2_2_in_4_ga2(x1, x2)) = x1 + x2
POL(if_s2_2_in_2_ga1(x1)) = x1
POL(if_s2_2_in_3_ga2(x1, x2)) = x1 + x2
POL(if_s2_2_in_7_ga3(x1, x2, x3)) = x1 + x2
POL(if_add_3_in_1_gga1(x1)) = x1
POL(add_3_out_gga1(x1)) = 1 + x1
POL(if_isNat_1_in_1_g1(x1)) = 0
POL(isNat_1_out_g) = 0
POL(s2_2_out_ga1(x1)) = 1 + x1
POL(IF_S2_2_IN_4_GA2(x1, x2)) = x1 + x2
POL(if_s2_2_in_5_ga1(x1)) = x1
POL(if_s2_2_in_6_ga3(x1, x2, x3)) = x1 + x2
POL(isNat_1_in_g1(x1)) = 0
POL(add_3_in_gga2(x1, x2)) = x1 + x2
POL(if_s2_2_in_8_ga1(x1)) = x1
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = x1
POL(s_11(x1)) = x1
POL(if_s2_2_in_1_ga1(x1)) = x1
POL(s2_2_in_ga1(x1)) = x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(X, Y)) -> IF_S2_2_IN_3_GA2(Y, s2_2_in_ga1(X))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
s2_2_in_ga1(plus_22(A, plus_22(B, C))) -> if_s2_2_in_1_ga1(s2_2_in_ga1(plus_22(plus_22(A, B), C)))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_2_ga1(s2_2_in_ga1(plus_22(B, A)))
s2_2_in_ga1(plus_22(X, 0_0)) -> s2_2_out_ga1(X)
s2_2_in_ga1(plus_22(X, Y)) -> if_s2_2_in_3_ga2(Y, s2_2_in_ga1(X))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_6_ga3(A, B, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g1(isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g
if_isNat_1_in_1_g1(isNat_1_out_g) -> isNat_1_out_g
if_s2_2_in_6_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_7_ga3(A, B, isNat_1_in_g1(B))
if_s2_2_in_7_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_8_ga1(add_3_in_gga2(A, B))
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
if_s2_2_in_8_ga1(add_3_out_gga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_3_ga2(Y, s2_2_out_ga1(A)) -> if_s2_2_in_4_ga2(A, s2_2_in_ga1(Y))
if_s2_2_in_4_ga2(A, s2_2_out_ga1(B)) -> if_s2_2_in_5_ga1(s2_2_in_ga1(plus_22(A, B)))
if_s2_2_in_5_ga1(s2_2_out_ga1(Z)) -> s2_2_out_ga1(Z)
if_s2_2_in_2_ga1(s2_2_out_ga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_1_ga1(s2_2_out_ga1(D)) -> s2_2_out_ga1(D)
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(plus_22(A, plus_22(B, C))) -> if_s2_2_in_1_ga1(s2_2_in_ga1(plus_22(plus_22(A, B), C)))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_2_ga1(s2_2_in_ga1(plus_22(B, A)))
s2_2_in_ga1(plus_22(X, 0_0)) -> s2_2_out_ga1(X)
s2_2_in_ga1(plus_22(X, Y)) -> if_s2_2_in_3_ga2(Y, s2_2_in_ga1(X))
s2_2_in_ga1(plus_22(A, B)) -> if_s2_2_in_6_ga3(A, B, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g1(isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g
if_isNat_1_in_1_g1(isNat_1_out_g) -> isNat_1_out_g
if_s2_2_in_6_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_7_ga3(A, B, isNat_1_in_g1(B))
if_s2_2_in_7_ga3(A, B, isNat_1_out_g) -> if_s2_2_in_8_ga1(add_3_in_gga2(A, B))
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
if_s2_2_in_8_ga1(add_3_out_gga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_3_ga2(Y, s2_2_out_ga1(A)) -> if_s2_2_in_4_ga2(A, s2_2_in_ga1(Y))
if_s2_2_in_4_ga2(A, s2_2_out_ga1(B)) -> if_s2_2_in_5_ga1(s2_2_in_ga1(plus_22(A, B)))
if_s2_2_in_5_ga1(s2_2_out_ga1(Z)) -> s2_2_out_ga1(Z)
if_s2_2_in_2_ga1(s2_2_out_ga1(C)) -> s2_2_out_ga1(C)
if_s2_2_in_1_ga1(s2_2_out_ga1(D)) -> s2_2_out_ga1(D)
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
S2_2_IN_GA1(plus_22(X, Y)) -> S2_2_IN_GA1(X)
With the implicit AFS there is no usable rule.
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
Used ordering: POLO with Polynomial interpretation:
POL(plus_22(x1, x2)) = 1 + x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
POL(plus_22(x1, x2)) = x1 + x2
POL(S2_2_IN_GA1(x1)) = 1 + x1
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ PrologToPiTRSProof
S2_2_IN_GA1(plus_22(A, B)) -> S2_2_IN_GA1(plus_22(B, A))
S2_2_IN_GA1(plus_22(A, plus_22(B, C))) -> S2_2_IN_GA1(plus_22(plus_22(A, B), C))
s2_2_in_ga1(x0)
isNat_1_in_g1(x0)
if_isNat_1_in_1_g1(x0)
if_s2_2_in_6_ga3(x0, x1, x2)
if_s2_2_in_7_ga3(x0, x1, x2)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
if_s2_2_in_8_ga1(x0)
if_s2_2_in_3_ga2(x0, x1)
if_s2_2_in_4_ga2(x0, x1)
if_s2_2_in_5_ga1(x0)
if_s2_2_in_2_ga1(x0)
if_s2_2_in_1_ga1(x0)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> IF_S2_2_IN_1_GA5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> S2_2_IN_GA2(plus_22(plus_22(A, B), C), D)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_2_GA4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
S2_2_IN_GA2(plus_22(A, B), C) -> S2_2_IN_GA2(plus_22(B, A), C)
S2_2_IN_GA2(plus_22(X, Y), Z) -> IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_in_ga2(X, A))
S2_2_IN_GA2(plus_22(X, Y), Z) -> S2_2_IN_GA2(X, A)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_6_GA4(A, B, C, isNat_1_in_g1(A))
S2_2_IN_GA2(plus_22(A, B), C) -> ISNAT_1_IN_G1(A)
ISNAT_1_IN_G1(s_11(X)) -> IF_ISNAT_1_IN_1_G2(X, isNat_1_in_g1(X))
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> IF_S2_2_IN_7_GA4(A, B, C, isNat_1_in_g1(B))
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> ISNAT_1_IN_G1(B)
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> IF_S2_2_IN_8_GA4(A, B, C, add_3_in_gga3(A, B, C))
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> ADD_3_IN_GGA3(A, B, C)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_in_ga2(Y, B))
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> S2_2_IN_GA2(Y, B)
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> IF_S2_2_IN_5_GA6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> S2_2_IN_GA2(plus_22(A, B), Z)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> IF_S2_2_IN_1_GA5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
S2_2_IN_GA2(plus_22(A, plus_22(B, C)), D) -> S2_2_IN_GA2(plus_22(plus_22(A, B), C), D)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_2_GA4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
S2_2_IN_GA2(plus_22(A, B), C) -> S2_2_IN_GA2(plus_22(B, A), C)
S2_2_IN_GA2(plus_22(X, Y), Z) -> IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_in_ga2(X, A))
S2_2_IN_GA2(plus_22(X, Y), Z) -> S2_2_IN_GA2(X, A)
S2_2_IN_GA2(plus_22(A, B), C) -> IF_S2_2_IN_6_GA4(A, B, C, isNat_1_in_g1(A))
S2_2_IN_GA2(plus_22(A, B), C) -> ISNAT_1_IN_G1(A)
ISNAT_1_IN_G1(s_11(X)) -> IF_ISNAT_1_IN_1_G2(X, isNat_1_in_g1(X))
ISNAT_1_IN_G1(s_11(X)) -> ISNAT_1_IN_G1(X)
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> IF_S2_2_IN_7_GA4(A, B, C, isNat_1_in_g1(B))
IF_S2_2_IN_6_GA4(A, B, C, isNat_1_out_g1(A)) -> ISNAT_1_IN_G1(B)
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> IF_S2_2_IN_8_GA4(A, B, C, add_3_in_gga3(A, B, C))
IF_S2_2_IN_7_GA4(A, B, C, isNat_1_out_g1(B)) -> ADD_3_IN_GGA3(A, B, C)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_in_ga2(Y, B))
IF_S2_2_IN_3_GA4(X, Y, Z, s2_2_out_ga2(X, A)) -> S2_2_IN_GA2(Y, B)
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> IF_S2_2_IN_5_GA6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
IF_S2_2_IN_4_GA5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> S2_2_IN_GA2(plus_22(A, B), Z)
s2_2_in_ga2(plus_22(A, plus_22(B, C)), D) -> if_s2_2_in_1_ga5(A, B, C, D, s2_2_in_ga2(plus_22(plus_22(A, B), C), D))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_2_ga4(A, B, C, s2_2_in_ga2(plus_22(B, A), C))
s2_2_in_ga2(plus_22(X, 0_0), X) -> s2_2_out_ga2(plus_22(X, 0_0), X)
s2_2_in_ga2(plus_22(X, Y), Z) -> if_s2_2_in_3_ga4(X, Y, Z, s2_2_in_ga2(X, A))
s2_2_in_ga2(plus_22(A, B), C) -> if_s2_2_in_6_ga4(A, B, C, isNat_1_in_g1(A))
isNat_1_in_g1(s_11(X)) -> if_isNat_1_in_1_g2(X, isNat_1_in_g1(X))
isNat_1_in_g1(0_0) -> isNat_1_out_g1(0_0)
if_isNat_1_in_1_g2(X, isNat_1_out_g1(X)) -> isNat_1_out_g1(s_11(X))
if_s2_2_in_6_ga4(A, B, C, isNat_1_out_g1(A)) -> if_s2_2_in_7_ga4(A, B, C, isNat_1_in_g1(B))
if_s2_2_in_7_ga4(A, B, C, isNat_1_out_g1(B)) -> if_s2_2_in_8_ga4(A, B, C, add_3_in_gga3(A, B, C))
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_s2_2_in_8_ga4(A, B, C, add_3_out_gga3(A, B, C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_3_ga4(X, Y, Z, s2_2_out_ga2(X, A)) -> if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_in_ga2(Y, B))
if_s2_2_in_4_ga5(X, Y, Z, A, s2_2_out_ga2(Y, B)) -> if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_in_ga2(plus_22(A, B), Z))
if_s2_2_in_5_ga6(X, Y, Z, A, B, s2_2_out_ga2(plus_22(A, B), Z)) -> s2_2_out_ga2(plus_22(X, Y), Z)
if_s2_2_in_2_ga4(A, B, C, s2_2_out_ga2(plus_22(B, A), C)) -> s2_2_out_ga2(plus_22(A, B), C)
if_s2_2_in_1_ga5(A, B, C, D, s2_2_out_ga2(plus_22(plus_22(A, B), C), D)) -> s2_2_out_ga2(plus_22(A, plus_22(B, C)), D)